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Abstract

Astrocytes are a heterogeneous population of glial cells in the brain, which adapt

their properties to the requirements of the local environment. Two major groups

of astrocytes are protoplasmic astrocytes residing in gray matter as well as

fibrous astrocytes of white matter. Here, we compared the energy metabolism of

astrocytes in the cortex and corpus callosum as representative gray matter and

white matter regions, in acute brain slices taking advantage of genetically

encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP.

Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+

redox ratio, and a lower cytosolic concentration of ATP compared to cortical

astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased

extracellular concentrations of K+, typical correlates of neuronal activity, induced

a more reduced NADH/NAD+ redox ratio. While application of glutamate

decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in

an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+

and glutamate was observed in astrocytes in the corpus callosum. Finally, strong

intrinsic neuronal activity provoked by application of bicuculline and withdrawal

of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state

as well as a slight reduction of [ATP] in gray and white matter astrocytes. In sum-

mary, the metabolism of astrocytes in cortex and corpus callosum shows distinct

basal properties, but qualitatively similar responses to neuronal activity, probably

reflecting the different environment and requirements of these brain regions.
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1 | INTRODUCTION

Astrocytes are a heterogeneous type of glial cells in the brain, which

have been classified in several different subpopulations. These includeSusanne Köhler and Ulrike Winkler contributed equally to this work.
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protoplasmic astrocytes residing in gray matter (GM), and fibrous

astrocytes localized within white matter (WM) (Köhler et al., 2021;

Matyash & Kettenmann, 2010; Miller & Raff, 1984; Schitine

et al., 2015; Sofroniew & Vinters, 2010). These two populations of

astrocytes differ substantially in their morphology: protoplasmic astro-

cytes are characterized by round somata and highly branched pro-

cesses, while the cell bodies of fibrous astrocytes are more elongated

and processes are long, thin and less-branched running parallel to neu-

ronal axons in WM. Many other properties are also different, like their

development during gliogenesis (Bribián et al., 2016; García-Mar-

qués & L�opez-Mascaraque, 2013; Luskin & McDermott, 1994), their

mRNA and protein expression levels (Aberg & Kozlova, 2000; Bachoo

et al., 2004; Bignami et al., 1972; Yeh et al., 2009) as well as their sus-

ceptibility to ischemia (Hamner et al., 2011; Köhler et al., 2021;

Matute et al., 2013; Pantoni et al., 1996; Shannon et al., 2007;

Tekkok & Ransom, 2004; Wu et al., 2015). However, whether these

different properties and the different metabolic demands in GM and

WM are reflected by heterogeneity of energy metabolism of astro-

cytes has not been elucidated in detail so far (Köhler et al., 2021;

Oberheim et al., 2012).

Astrocytes in GM are in close structural contact to neurons. They

enwrap neuronal synapses with their fine processes forming “tripar-
tite synapses,” receive neuronal information and signal back to neu-

rons by releasing gliotransmitters (Araque et al., 1999; Parpura &

Zorec, 2010). Glutamate released at glutamatergic synapses is metab-

olized to glutamine in astrocytes and shuttled back to neurons within

the glutamate-glutamine-cycle (Bak et al., 2006; Benjamin &

Quastel, 1974; Norenberg & Martinez-Hernandez, 1979; Tani

et al., 2014). Astrocytes supply neurons with energy substrates, and

contribute to neurotransmitter metabolism and ion homeostasis

(Allaman et al., 2011; Araque et al., 1999; Bak et al., 2006;

Bolaños, 2016; Díaz-García et al., 2017; DiNuzzo et al., 2012; Farhy-

Tselnicker & Allen, 2018; Hertz & Zielke, 2004; Newman, 1986;

Pellerin & Magistretti, 1994, 2012; Sofroniew & Vinters, 2010;

Walz, 2000). For example, glutamate and potassium (K+) released

from active neurons are taken up by astrocytes and stimulate astro-

cytic metabolism, including glycolysis and lactate release (Bittner

et al., 2011; Choi et al., 2012; Fernandez-Moncada et al., 2018;

Köhler et al., 2018; MacVicar & Choi, 2017; Pellerin &

Magistretti, 1994; Ruminot et al., 2017; Sotelo-Hitschfeld et al., 2012;

Xu et al., 2013). The concentration of cytosolic ATP ([ATP]) decreases

when GM astrocytes are exposed to glutamate, while it increases in

response to a higher extracellular concentration of K+ ([K+]e)

(Fernandez-Moncada et al., 2018; Lerchundi et al., 2019, 2020;

Magistretti & Chatton, 2005; Winkler et al., 2017). In awake mice,

arousal induced neuronal activity in the cortex stimulates glycolytic

activation and lactate release from astrocytes (Zuend et al., 2020). In

summary, the energy metabolism of protoplasmic astrocytes in GM is

closely associated with neuronal activity and signal processing.

Fibrous astrocytes in WM face a different situation, most likely

coinciding with different metabolic requirements. Neuronal axons in

WM propagate action potentials, but there is much less if any neuro-

nal information processing taking place. Nevertheless, glutamate and

K+ are also released from WM axons (Kukley et al., 2007; Wake

et al., 2011; Ziskin et al., 2007). In many cases, axons are myelinated

and astrocytes only have direct contact to axons at the node of Ran-

vier. Therefore, also oligodendrocytes contribute to energy metabo-

lism in WM (Fünfschilling et al., 2012; Hirrlinger & Nave, 2014; Lee

et al., 2012; Nave, 2010b; Saab et al., 2016; Trevisiol et al., 2020).

Action potential propagation and axonal function depends on astro-

cytic glycogen as an energy fuel (Brown et al., 2005; Fern et al., 1998;

Tekkok et al., 2005; Waitt et al., 2017; Wender et al., 2000), and inhi-

biting lactate transporters in the optic nerve impairs axonal ATP main-

tenance during electrical activity (Trevisiol et al., 2017). However,

evidence from the corpus callosum suggests that glucose rather than

lactate is transferred between glial cells and neurons (Meyer

et al., 2018). Taken together, the detailed mechanisms of metabolite

transfer as well as the regulation of energy metabolism in fibrous

astrocytes according to neuronal energy demand remain to be

elucidated.

In this study, we took advantage of genetically encoded fluores-

cent nanosensors (Hirrlinger & Nimmerjahn, 2022; Koveal et al., 2020;

San Martín et al., 2022; San Martín, Sotelo-Hitschfeld, et al., 2014)

reporting the NADH/NAD+ redox state (Peredox-mCherry; Hung

et al., 2011) or the cytosolic concentration of ATP (ATeam1.03YEMK;

Imamura et al., 2009) to investigate the dynamics of energy metabo-

lism of astrocytes in cortex (i.e., GM) and corpus callosum (i.e., WM) in

acute brain slices. Different imaging techniques revealed a more

reduced NADH/NAD+ redox state and lower ATP levels in WM astro-

cytes. Exposing astrocytes to glutamate, increased concentrations of

extracellular K+ or intense neuronal activity disclosed qualitatively

similar responses of energy metabolism in GM and WM astrocytes.

2 | MATERIAL AND METHODS

2.1 | Ethics statement

All experiments were performed in accordance with the guidelines for

the welfare of experimental animals issued by the European Commu-

nities Council Directive (2010/63/EU) and with the German Protec-

tion of Animals Act (Tierschutzgesetz). C57/Bl6 mice were bred in the

animal facility of the Medical Faculty of Leipzig University and were

housed in individually ventilated cages in a specific pathogen free

environment in a 12/12 h light dark cycle with access to food and

water ad libitum. Experiments were approved by the animal welfare

office of the University Medical Center, Leipzig, as well as the local

governmental authorities (Landesdirektion Leipzig, registration num-

bers T04/13, T20/16, and TVV62/15).

2.2 | Peredox and ATeam imaging in astrocytes in
acutely isolated brain slices

To image the dynamics of the NADH/NAD+ redox state as well as

of the ATP concentration in astrocytes in the cortex (Ctx) and

2 KÖHLER ET AL.
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corpus callosum (CC) in acute brain slices, the open reading frames

of Peredox (Peredox-mCherry, Hung et al., 2011) or ATeam

(ATeam1.03YEMK, Imamura et al., 2009) were cloned into vectors

for adeno-associated virus (AAV) mediated expression. Astrocyte-

specific expression was achieved by GFAP-promoter elements

(Lee et al., 2008; Mächler et al., 2016; Stobart et al., 2018) as

described recently for ATeam (Köhler et al., 2020). AAVs (serotype

5) were obtained from the Viral Vector Facility at the Neurosci-

ence Center Zurich, University of Zurich, Switzerland. About 0.5 μl

of AAV containing solution (virus titer: Peredox: 1.8 � 1012 vg/ml;

ATeam: 2.75 � 1012 vg/ml) were injected stereotactically into the

brain of 2- to 3-month old mice using the following coordinates

relative to bregma: Ctx: - 0.5 mm caudal, lateral 2.0 mm, ventral

1.1 mm; CC: - 1.9 mm caudal, lateral 0.2 mm, ventral 1.4 mm. Four

weeks after injection, mice were sacrificed and 250 μm thick coro-

nal brain slices were prepared as described previously (Köhler

et al., 2020; Pätz et al., 2018). Imaging experiments were per-

formed with a 2-photon laser scanning microscope (Olympus

FV1000, Olympus, Tokyo, Japan) equipped with a XLPlan N

25x/1.05 W objective (Olympus) and a Mai Tai DeepSee laser

(Spectra-Physics, Darmstadt, Germany) with the following imaging

parameters for Peredox (wavelengths): excitation: 800 nm; beams-

plitter 570 nm; emission (T-Sapphire): BP495-540 nm; emission

(mCherry): BP575-630 nm. For ATeam: excitation: 810 nm, beams-

plitter 510 nm; emission (CFP): BP460-500 nm. Pixel size:

0.552 � 0.552 μm; 512 � 512 pixels; pixel dwell time: 2 μs; time

resolution: 60 s; stack of 23 z-planes. Acute slices were continu-

ously perfused at room temperature with artificial cerebrospinal

fluid (aCSF, in mM: 130 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25

NaH2PO4, 26 NaHCO3, 10 Glucose, pH 7.4) and bubbled with car-

bogen (95% O2, 5% CO2). Glucose was omitted in solutions con-

taining lactate and pyruvate. All solutions were adjusted to the

same pH and osmolality. The following drugs and concentrations

were used: lactate (10 mM, Applichem, Darmstadt, Germany);

pyruvate (10 mM, Sigma-Aldrich, St. Louis, USA); glutamate

(100 μM, AppliChem); bicuculline methiodide (10 μM, Sigma-

Aldrich); tetrodotoxin (TTX, 1 μM, Tocris, Bristol, UK); sodium

azide (10 mM, Serva, Heidelberg, Germany); sodium iodoacetate

(1 mM, Sigma-Aldrich). ACSF with higher potassium concentra-

tions of 5 or 10 mM will be referred to as K5 or K10, respectively.

At the beginning of each experiment, slices were transferred

to a submerged recording chamber and superfused with control

aCSF for 20 min to establish the baseline sensor signal. Thereafter,

different substances/neurotransmitter solved in aCSF were bath-

applied for 10–20 min for each condition. About 10 mM lactate

and 10 mM pyruvate were applied consecutively at the end of

experiments with Peredox to establish the dynamic range of the

sensor as described previously (Hung et al., 2011; Köhler

et al., 2018; Mongeon et al., 2016), before azide (10 mM)

+iodoacetate (1 mM) was finally applied (Figure S1). Solutions

containing neurotransmitters or an increased K+ concentration

were supplemented with tetrodotoxin (TTX; 1 μM). TTX prevents

action potential firing allowing to study action potential-

independent effects of these treatments on astrocytes. For experi-

ments with bicuculline, no Mg2+ was added to the aCSF to avoid a

Mg2+ block of NMDA receptors.

The mean gray scale value within a manually defined region of

interest (ROI) containing a single cell was calculated for each imag-

ing channel using Fiji (Schindelin et al., 2012). The Peredox signal

was calculated as the ratio of the intensity of the T-Sapphire chan-

nel and the intensity of the mCherry channel (Hung &

Yellen, 2014; Köhler et al., 2018), while the ATeam signal was cal-

culated as the FRET/CFP ratio (Köhler et al., 2020; Trevisiol

et al., 2017). Data was corrected for baseline drift. For Peredox,

the sensor signal was converted into the NADH/NAD+ redox ratio

using the calibration described below. For ATeam a similar calibra-

tion could not be performed due to the difficulties to modulate

intracellular ATP concentrations in a quantitative manner for cali-

bration as well as to obtain reliable Rmin and Rmax values within

each experiment. Therefore, data on the NADH/NAD+ redox state

is given as NADH/NAD+ redox ratio, while data on ATP is pre-

sented as ATeam sensor signal. Treatment effects are shown as

the difference of data averaged for the last 2–5 min of treatment

and the last 5 min of pre-incubation in aCSF prior to treatment

(ΔNADH/NAD+; ΔATeam signal).

2.3 | Fluorescence lifetime imaging (FLIM)

Brain slices were prepared as described above. The slices were

constantly superfused with carbogen-bubbled aCSF and live-FLIM

of Peredox was performed using a 2-photon laser scanning micro-

scope (Olympus BX50WI) equipped with a Spectra Physics

Tsunami pulsed (80 MHz) laser, a 60� water-immersion objective

(Olympus LumPlan 60�/0.9) and a FLIM system (TimeHarp

200, PicoQuant, Berlin, Germany). T-Sapphire of Peredox was

excited at 800 nm and emitted fluorescence was detected through

three consecutive emission filters SP610, SP625, and SP540 with

a pixel size of 512 � 512. Data was analyzed using the software

SymPhoTime64 (PicoQuant) and IgorPro8 (WaveMetrics Inc., Port-

land, USA).

For individual fluorescence decay curves, a semi-quantitative

“empirical” lifetime was computed similar to the approach in

Mongeon et al. (2016). In brief, the median photon arrival time

from all photons detected within a time window of 6 ns after

the steepest rise on the fluorescence lifetime was calculated;

the exact form of the instrument function was not taken into

consideration. In contrast to multi-exponential fitting

approaches, the empirical lifetime is significantly less prone to

errors induced by low signal-to-noise data, possible changes of

the instrument response function at different positions of the

field-of-view, and the uncertainties inherent to fitting noisy

fluorescence data with multi-exponential fits (Li et al., 2020).

Note that the time window of 6 ns of our analysis results in

shorter empirical lifetimes than the time window of 10 ns used

by Mongeon et al. (2016).

KÖHLER ET AL. 3
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2.4 | Calibration of the Peredox sensor

To calibrate the signal of Peredox to the NADH/NAD+ redox ratio,

lactate and pyruvate were applied to the slices in different concentra-

tion ratios. Lactate and pyruvate are taken up into astrocytes by

monocarboxylate transporters and equilibrate with the NADH/NAD+

redox ratio by the reaction of lactate dehydrogenase (LDH). To obtain

the most oxidized (reflecting Rmin) and most reduced (reflecting Rmax)

state, slices were superfused with pyruvate (10 mM) and lactate

(10 mM), respectively. In addition, slices were superfused with aCSF

containing lactate and pyruvate in concentration ratios [lactate]/

[pyruvate] (L/P) of 50 and 20 at [lactate] = 10 mM, corresponding to

a NADH/NAD+ redox ratio of 0.014 and 0.0056, respectively, given

the thermodynamic equilibration constant of the LDH reaction

k = 1.1 � 10�11 M and assuming a cytosolic pH of 7.4 (Hung &

Yellen, 2014; Köhler et al., 2018). To obtain a calibration function, the

data was fitted using a sigmoidal equation fsensor = Rmin + ΔRmax * x/

(kD + x); with fsensor: sensor signal (Peredox fluorescence lifetime or

T-Sapphire/mCherry fluorescence ratio) and x: NADH/NAD+ redox

ratio (Sigmaplot 12.0; Systat, Erkrath, Germany). This calibration was

TABLE 1 Number of animals (N) and number of analyzed cells (n)

Figure Condition

N (number of animals) n (number of analyzed cells)

Cortex Corpus callosum Cortex Corpus callosum

2a Calibration

Lactate 7 5 114 98

L/P = 50 5 4 62 34

L/P = 20 5 4 87 40

Pyruvate 7 5 121 102

2b/c/d Baseline

FLIM (Lifetime) 7 5 120 96

FLIM (NADH/NAD+) 7 5 119 85

Fl.ratio (NADH/NAD+) 24 22 302 168

3d Peredox

Glutamate 5 4 45 11

[K+]e = 5 mM 5 4 40 14

[K+]e = 10 mM 5 3 41 13

Glutamate + [K+]e = 5 mM 4 3 35 10

4a ATeam

Baseline 19 14 343 237

4c ATeam

Baseline 11 5 37 21

azide + IA 11 5 37 21

4d/e ATeam

Glutamate 6 6 92 83

[K+]e = 5 mM 4 5 102 52

[K+]e = 10 mM 4 5 102 52

Glutamate + [K+]e = 5 mM 5 5 80 30

5b Field potential recordings 3 3 7 (slices) 7 (slices)

5c/d Bicuculline

Peredox 4 4 48 29

ATeam 4 5 69 72

S2A Peredox-Baseline

+TTX 18 13 209 51

�TTX 24 22 302 168

S2B ATeam-Baseline

+TTX 15 9 274 165

�TTX 19 14 343 237

4 KÖHLER ET AL.
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performed for both fluorescence lifetime imaging (FLIM) and ratio-

metric 2-photon fluorescence intensity imaging and the calibration

curves were used to calculate the NADH/NAD+ redox ratio from the

Peredox signal in further experiments.

2.5 | Field potential recordings

For local field potential (LFP) recordings, acute brain slices were pre-

pared as described above and stored under submerged conditions at

room temperature. Recording electrodes were pulled from filamented

borosilicate glass (Hilgenberg, Germany) with a resistance of around

4–6 MΩ when filled with aCSF. Electrodes were placed both in Ctx

(L3) and CC (above the hippocampal area CA1), that is, the same areas

as used for imaging experiments. LFP recordings were conducted

under submerged conditions, signals were pre-amplified (100�,

EXT-10C), filtered at 3 kHz (LPBF-01GX) and once more amplified

(10�, PA-2S, all instruments from npi electronic GmbH, Tamm,

Germany). Signals were digitized (Micro1401-3, CED, Cambridge, UK)

and stored for off-line analysis using Spike2v9.01 (CED, Cambridge,

UK). Offline, data underwent a DC removal (time constant of 0.5 s)

and were low pass-filtered (25 Hz). Single events were manually ana-

lyzed using Spike2.

2.6 | Immunohistochemical analysis

Mice were transcardially perfused with 4% paraformaldehyde in phos-

phate buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 8 mM

Na2HPO4, 0.15 mM KH2PO4, pH 7.4). The brain was removed from

the scull and post-fixed for 24 h in the same fixative. About 45 μm

thick vibratome sections were prepared and stained for the pan-

astrocyte marker 3-phosphoglycerate dehydrogenase (3PGDH;

Yamasaki et al., 2001) using a guinea pig anti-3PGDH antibody

(1:200, Frontier Institute, Ishikari, Hokkaido, Japan) and a donkey anti

guinea pig CF633 (1:250, Sigma-Aldrich) in combination with a goat

anti-GFP (Biotin conjugated) antibody (1:200, Rockland Immunochem-

icals, Pottstown, PA) and Streptavidin-Cy2 (1:500, Dianova, Hamburg,

Germany). The staining protocol was previously described in detail

(Winkler et al., 2013). Sections were mounted in ImmunoSelect Anti-

fading Mounting Medium DAPI (Dianova). Images were acquired using

a confocal laser scanning microscope (Olympus IX-71) equipped with

an Olympus UApo/340 40�/1.35 oil immersion objective (Olympus,

Hamburg, Germany).

2.7 | Statistics and data presentation

All experiments were performed on cells of at least three indepen-

dently prepared brain slices from different mice. N (numbers of dif-

ferent mice used) and n (numbers of cells analyzed) are given in

Table 1. Summarized data are shown as boxplots with the box

spanning from 25th to 75th percentile, the whiskers spanning from

5th to the 95th percentile. Next to each boxplot, the same data set

is presented as a dot plot showing all individual data points. The

plus sign within the box represents the mean value, solid lines

show the median. Gray boxplots represent data from cortical

astrocytes (i.e., gray matter astrocytes), while white boxplots show

data from astrocytes within the corpus callosum (i.e., white matter

astrocytes). To illustrate treatment effects, the baseline prior to

application of the treatment was subtracted to show change of

the NADH/NAD+ redox state (ΔNADH/NAD+ = NADH/NAD+
t

� NADH/NAD+
baseline; with NADH/NAD+

t representing the

NADH/NAD+ at a timepoint of interest t) or the change of the

ATeam sensor signal (ΔATeam signal = ATeam signalt � ATeam

signalbaseline). Time resolved traces show the sliding average of

three time points. GraphPad Prism was used for statistical analysis

and data presentation. Final figures were arranged using Corel

Draw. Statistical analysis of comparisons to baseline conditions

(paired data) was done by Wilcoxon Signed Rank Test and asterisks

(*) indicate significant differences compared to baseline. Data of

Ctx and CC was compared by nested t-test (Figures 2b–d, 4a,c,

and 5c) or nested ANOVA followed by Holm-Šídák post-hoc test

(Figures 2a and 3d; Figure S2A,B), taking the different mice from

which slices were prepared as subgroup classifier. Electrophysio-

logical data was compared by Kruskal-Wallis One Way Analysis of

Variance on Ranks (Figure 5b). # indicates significant differences

compared to specific conditions as indicated in the figures. p < .05

was considered as statistically significant.

3 | RESULTS

To study the dynamics of energy metabolites in protoplasmic and

fibrous astrocytes genetically encoded fluorescent sensors for the

cytosolic NADH/NAD+ redox state (Peredox; Hung et al., 2011) and

the cytosolic concentration of ATP (ATeam1.03YEMK; abbreviated

as “ATeam” in the following; Imamura et al., 2009) were expressed

in astrocytes in situ by AAV-mediated gene transfer driven by the

GFAP-promoter and stereotactic injections into cortex (Ctx) and

corpus callosum (CC). Cells expressing the sensors showed the typi-

cal morphology of gray matter protoplasmic astrocytes and white

matter fibrous astrocytes, respectively (Figure 1), reflecting their

well described morphological differences (Oberheim et al., 2012;

Somjen, 1988; Wang & Bordey, 2008). Indeed, most cells expressing

the sensor stained for the pan-astrocyte marker 3-phoshoglycerate-

dehydrogenase (Yamasaki et al., 2001, Ctx: 97% of 396 cells ana-

lyzed from 3 mice; CC: 92% of 188 cells from 2 mice), indicating that

the vast majority of cells analyzed in the following were astrocytes.

The NADH/NAD+ redox state was studied in both astrocytic sub-

populations taking advantage of the sensor Peredox (Hung

et al., 2011), and analyzed using fluorescence lifetime microscopy

(FLIM; Mongeon et al., 2016). To calibrate the fluorescence lifetime of

Peredox to the NADH/NAD+ redox ratio, lactate and pyruvate were

applied to the slices in different concentration ratios (Figure 2a).

These treatments shift the cytosolic NADH/NAD+ redox ratio, as

KÖHLER ET AL. 5
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both lactate and pyruvate are readily taken up into astrocytes by

monocarboxylate transporters (MCTs; Pierre & Pellerin, 2005) and

equilibrate with the NADH/NAD+ redox ratio due to the high activity

of lactate dehydrogenase (LDH) in astrocytes (Hung et al., 2011;

Köhler et al., 2018). Application of lactate, pyruvate or both com-

pounds in different concentration ratios resulted in the expected step-

wise change in fluorescence lifetime of Peredox in astrocytes in both

Ctx and CC (Figure 2a), ranging from 1.28 to 1.02 ns (median Ctx) and

1.34 to 1.04 ns (median CC) for lactate and pyruvate, respectively,

which corresponds to a proportional change of 1.26 and 1.29. These

data indicate that the fluorescence lifetime of Peredox is a sensitive

readout for the NADH/NAD+ redox ratio.

A longer fluorescence lifetime was observed in astrocytes of

the CC compared to cortical astrocytes under baseline conditions

(aCSF with 10 mM glucose), indicating a more reduced basal

NADH/NAD+ redox state (Figure 2b). Using the calibration

(Figure 2a; see methods for details), the corresponding NADH/

NAD+ redox ratio values were calculated, which were significantly

higher in astrocytes in the CC compared to cortical astrocytes

(Figure 2c). By analyzing the Peredox sensor signal using the ratio

of the fluorescence intensity of its two fluorophores (T-Sapphire/

mCherry) instead of FLIM the same result was obtained for the

NADH/NAD+ redox ratio (Figure 2d; data of both Ctx and CC is

not significantly different compared to the data obtained by FLIM

for Ctx and CC, respectively, as shown in Figure 2c). Of note, the

analysis of Peredox fluorescence both using ratiometric intensity

and fluorescence lifetime measurements showed a rather broad

distribution under baseline conditions, a finding which is well in

line with the previously reported substantial variability of the

NADH/NAD+ redox state in astrocytes (Hung et al., 2011; Köhler

et al., 2018; Mongeon et al., 2016). Taken together, white matter

astrocytes in the CC have a more reduced cytosolic NADH/NAD+

redox state than gray matter astrocytes in Ctx indicating heteroge-

neity of the energy metabolism of these two astrocytic cell popula-

tions in unstimulated conditions.

F IGURE 1 Morphology of astrocytes expressing fluorescent nanosensors in gray and white matter. Protoplasmic astrocytes in cortex (a; gray
matter) and fibrous astrocytes in the corpus callosum (b; white matter) expressing the Peredox sensor imaged with 2-photon-microscopy. The
T-Sapphire channel of Peredox is shown. Note the large somata of protoplasmic astrocytes (arrow in a) with their highly branched processes as
well as the elongated cell bodies of fibrous astrocytes (arrow in b) with their long processes orientated parallel to neuronal axons. Arrowheads
highlight astrocytic endfeet contacting blood vessels. Scale bar: 50 μm

F IGURE 2 Characterization of the basal cytosolic NADH/NAD+

redox state in astrocytes in the cortex and corpus callosum in acute brain
slices. (a) The fluorescence lifetime of the Peredox sensor in astrocytes in
acute brain slices, measured by FLIM, depends on the concentration
ratios of lactate and pyruvate (L/P= [lactate]/[pyruvate]). L, P: application
of lactate (10 mM) or pyruvate (10 mM), respectively, in the absence of
the other compound. (b) Fluorescence lifetime of Peredox in astrocytes in
Ctx (gray box) and CC (white box) under baseline conditions (aCSF with
10 mM glucose). (c) The NADH/NAD+ redox ratio under baseline
conditions is more reduced in astrocytes in the CC compared to Ctx. The
NADH/NAD+ redox ratio was calculated from the fluorescence lifetime
data shown in (b) using the calibration data shown in (a). (d) The NADH/
NAD+ redox ratio in astrocytes in Ctx and CC under baseline conditions
quantified using ratiometric 2-photon fluorescence intensity imaging
confirms the more reduced NADH/NAD+ redox state in astrocytes in CC
compared to Ctx. Significant differences between the conditions are
indicated (#p < .05; ns: no significant difference, p > .05). For number of
cells (n) and animals (N) see Table 1. Next to each boxplot, the same data
set is presented as a dot plot showing all individual data points
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For further experiments, ratiometric fluorescence intensity was

measured instead of fluorescence lifetimes for several reasons:

(1) FLIM measurements required a higher fluorescence intensity caus-

ing phototoxic damage over time especially in astrocytes in CC

(Shannon et al., 2007; own observations) and are therefore no suitable

method for long-lasting experiments. (2) Data obtained with both

methods reveal a similar detection range and a similar basal redox

state (compare Figure 2c,d) confirming that both methods generate

reliable results.

Astrocytes sense neuronal activity and respond to activity levels,

for example, by adjusting their metabolism allowing maintenance of

brain energy homeostasis (Köhler et al., 2018; Pellerin &

Magistretti, 1994; Sotelo-Hitschfeld et al., 2015; Zuend et al., 2020).

Two signals related to neuronal activity are glutamate (released at

excitatory, glutamatergic synapses as well as from active axons;

Gasic & Hollmann, 1992; Kukley et al., 2007; Ziskin et al., 2007) and

increased concentrations of extracellular potassium ([K+]e; released

from neurons during repolarization; Poolos et al., 1987; Rash, 2010).

Therefore, to investigate whether GM and WM astrocytes differ in

their metabolic reactions in response to these two correlates of neu-

ronal activity, the NADH/NAD+ redox state was monitored.

Experiments were performed in the presence of TTX to prevent neu-

ronal action potential firing allowing to study action potential-

independent effects on astrocytes. TTX by itself had no effect on the

NADH/NAD+ redox state (Figure S2A). Application of glutamate

induced a slow increase of the NADH/NAD+ redox ratio, that is, a

more reduced redox state in astrocytes both in the Ctx and CC

(Figure 3a,d; note that data is given as ΔNADH/NAD+, that is,

NADH/NAD+
baseline was subtracted from NADH/NAD+

t to highlight

treatment induced changes). In contrast, the NADH/NAD+ redox

state increased much faster and more strongly when [K+]e was

increased (Figure 3b,d). Simultaneous application of both signals

resulted in an additive increase of the NADH/NAD+ redox state in

Ctx, but not in CC (Figure 3c,d; Ctx: Glu vs. Glu + K5: p < .05, K5

vs. Glu + K5: p < .05; CC: Glu vs. Glu + K5: p > .05, K5 vs. Glu + K5:

p > .05; nested ANOVA). Of note, despite the different basal NADH/

NAD+ redox state (Figure 2c,d), the change in the NADH/NAD+

redox state induced by glutamate and increasing [K+]e was not signifi-

cantly different between astrocytes in Ctx and CC in all conditions

tested (Figure 3d).

In addition to the NADH/NAD+ redox state, the dynamics of the

cytosolic concentration of ATP was analyzed in astrocytes in Ctx and

F IGURE 3 Glutamate and K+ regulate the cytosolic NADH/NAD+ redox state in astrocytes in gray and white matter. (a) Time course of the
change of the NADH/NAD+ redox ratio (ΔNADH/NAD+ = NADH/NAD+

t � NADH/NAD+
baseline) in astrocytes in Ctx (gray line) and CC (black

line) exposed to glutamate (100 μM; 20 min starting at 10 min of incubation as indicated by the gray shading). In (a–c) example traces are shown.
(b) Time course of ΔNADH/NAD+ in astrocytes exposed to potassium (5 mM; 10 min). (c) Time course of ΔNADH/NAD+ in astrocytes exposed
to glutamate (100 μM) and potassium (5 mM) for 20 min as indicated. (d) Quantification of ΔNADH/NAD+ of astrocytes in Ctx (gray boxes) and
CC (white boxes). The figure shows data averaged between 8 and 10 min after the onset of stimulation with glutamate (Glu; 100 μM), K+ (K5:
5 mM; K10: 10 mM) or glutamate + K+ (Glu + K5; 100 μM, 5 mM). Peredox was imaged by ratiometric 2-photon intensity imaging, data is given
as difference to the NADH/NAD+ redox ratio prior to stimulation in all panels. *Data set is significant different from baseline obtained before
application of the respective treatment (p < .05). ns, no statistically significant difference between the conditions indicated (p > .05). For number
of cells (n) and animals (N) see Table 1. Next to each boxplot, the same data set is presented as a dot plot showing all individual data points
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CC taking advantage of the ATP sensor ATeam (Imamura et al., 2009).

Under baseline conditions, the sensor signal, assessed as the ratio of

the fluorescence intensity of its two fluorophores, was significantly

lower in astrocytes in CC compared to astrocytes in Ctx indicating a

lower concentration of ATP (Figure 4a). At the end of the experi-

ments, sodium azide and iodoacetate were applied to block oxidative

phosphorylation and glycolysis, respectively, thereby depleting the

cells of ATP (Figure 4b,c). Only a subset of cells could be analyzed

under these conditions due to swelling of the slice induced by

azide + iodoacetate. However, also this subset showed the same dif-

ference of the baseline ATeam signal between astrocytes in Ctx and

CC as the complete data set (Figure 4c). After depletion of ATP, no

differences of the ATeam signal of astrocytes in Ctx and CC were

observed, suggesting that the sensor behaves similar in the two

populations of cells. Therefore, the difference in the ATeam signal

under baseline conditions very likely reflects a difference in basal

[ATP]. However, due to the difficulties to calibrate the ATP sensor in

situ, the ATeam signal could not be converted into ATP concentration.

Consequently, because of the different baseline ATP sensor signal

and the non-linearity of the sensor, quantitative comparisons of

changes of the ATP concentration are only applicable within one cell

population (e.g., Ctx baseline vs. Ctx treatment), but not between the

two cell populations (i.e., Ctx vs. CC) (see Köhler et al., 2020 for a

detailed discussion of the implications of different basal sensor

signals).

In cortical astrocytes, application of glutamate induced a decrease

in the ATeam signal, while increasing [K+]e to 5 or 10 mM resulted in

an increase in the ATP sensor signal (Figure 4d; note that data is given

F IGURE 4 The baseline ATeam signal in gray and white matter astrocytes is different and regulated by glutamate and potassium. (a) The
ATeam signal in cortical astrocytes (gray box) and astrocytes of corpus callosum (white box) under baseline condition (aCSF, 10 mM glucose)
indicates a lower cytosolic concentration of ATP in astrocytes in CC compared to astrocytes in Ctx. (b) Example traces of the ATeam signal in
astrocytes in Ctx (gray trace) and CC (black trace) before and after application (arrow) of azide (10 mM) and iodoacetate (IA; 1 mM) to deplete the
cells of ATP. (c) Quantification of the baseline ATeam signal and the ATeam signal after depletion of ATP by application of azide + IA. Only cells
were included in this analysis, for which both a stable baseline signal and a stable signal after azide + IA was obtained. (d) Quantification of the
change of the ATeam fluorescence signal, that is, the difference to the ATeam signal prior to stimulation (ΔATeam signal = ATeam
signalt � ATeam signalbaseline) in cortical astrocytes exposed to glutamate (Glu; 100 μM), potassium (K5: 5 mM; K10: 10 mM) and

glutamate + potassium (Glu + K5; 100 μM, 5 mM). (e) Same experiment as in (d) for astrocytes in the corpus callosum. ATeam was imaged by
ratiometric 2-photon intensity imaging. *Data set is significant different from baseline obtained before application of the respective treatment
(p < .05). Significance of the difference between the conditions are indicated (#p < .05; ns: p > .05). For number of cells (n) and animals (N) see
Table 1. Next to each boxplot, the same data set is presented as a dot plot showing all individual data points
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as ΔATeam signal). Strikingly, co-application of glutamate and

increased [K+]e (5 mM) resulted in an intermediate increase in the

ATeam signal, suggesting that the increase in [ATP] induced by

increasing [K+]e compensates for the glutamate induced decrease

(Figure 4d; Glu vs. Glu + K5: p < .05, K5 vs. Glu + K5: p < .05; nested

ANOVA). These experiments were performed in the presence of TTX

to exclude indirect effects caused by neuronal action potentials. Appli-

cation of TTX alone had no effect on the ATeam signal in astrocytes

from both Ctx and CC (Figure S2B). In astrocytes in the CC, glutamate

application also resulted in a decrease of the ATeam signal, while

increasing [K+]e as well as co-application of glutamate and K+ slightly

increased it (Figure 4e). Taken together, these results indicate that the

energy metabolism of astrocytes in both Ctx and CC is sensitive to

glutamate and K+ showing a similar pattern of response.

To study the metabolic dynamics of gray and white matter astro-

cytes during intrinsic neuronal activity, electrical activity in brain slices

was induced by application of bicuculline and removal of Mg2+. This

treatment antagonizes inhibitory GABAA receptors and removes the

Mg2+-block of NMDA-type glutamate receptors, respectively, thereby

inducing repetitive, supraphysiological neuronal depolarizations

(Curtis et al., 1970; Karus et al., 2015). Epileptiform depolarizations

were observed almost simultaneously in Ctx and CC under these con-

ditions within 5–7 min by local field potential recordings, while almost

no such events occurred in baseline conditions or during removal of

Mg2+ alone (Figure 5a,b). To confirm that these effects are not caused

by prolonged recordings, experiments were repeated incubating the

slices for 50 min under baseline conditions (i.e., the full duration of

the previous experiment). Only very few depolarizations were

observed in these control experiments (Figure 5b, Figure S3) indicat-

ing that the depolarizations observed are specifically induced by appli-

cation of 0 Mg2+/bicuculline.

Using this model of intense neuronal activity, the NADH/

NAD+ redox state and the cytosolic ATP were analyzed in astro-

cytes in Ctx and CC by monitoring the signals of Peredox and

ATeam (Figure 5c,d). Neuronal activity induced a shift to a more

reduced NADH/NAD+ redox state both in astrocytes in the Ctx

and CC, and the change in the NADH/NAD+ redox state was not

significantly different between the brain areas (Figure 5c). In paral-

lel, the ATeam signal and hence cytosolic ATP levels decreased

slightly in both cell populations (Figure 5d). Taken together, endog-

enous neuronal activity, in this model of intense, supraphysiologi-

cal activation, results in metabolic regulation in astrocytes, with a

F IGURE 5 Intense, intrinsic neuronal activity affects cytosolic NADH/NAD+ redox state and ATP of astrocytes in both Ctx and
CC. (a) Simultaneous local field potential recordings of cortex (Ctx, gray) and corpus callosum (CC, black) under baseline condition, removal of
Mg2+ (0 Mg2+) and 0 Mg2+ + 10 μM bicuculline. Shown are example traces for both regions and each condition. Note the epileptiform
discharges in the lower two traces. (b) Count of epileptiform depolarizations per minute. Control recordings were performed by incubating slices
for 50 min under baseline conditions. Dots represent individual experiments (Ctx: gray dots; CC: white dots), black lines represent the median.
(c) Quantification of the change of the NADH/NAD+ redox ratio (ΔNADH/NAD+) in astrocytes in Ctx (gray boxes) and CC (white boxes) within a
time window of 2 min after 10 min stimulation with 0 Mg2+ + 10 μM bicuculline. Data is given as ΔNADH/NAD+, that is, the difference to the
NADH/NAD+ redox ratio prior to stimulation. (d) Quantification of the change of the ATeam sensor fluorescence signal (ΔATeam) in astrocytes in
Ctx and CC (same conditions as in c). *Data set is significant different from baseline (p < .05). Significance of the difference between the
conditions are indicated (#p < .05; ns: p > .05). For number of cells (n) and animals (N) see Table 1. Next to each boxplot, the same data set is
presented as a dot plot showing all individual data points
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similar shift of the NADH/NAD+ redox state in astrocytes in Ctx

and CC.

4 | DISCUSSION

Astrocytes are a heterogeneous population of glial cells which differ

in many properties between brain regions, but also within a given area

of the brain (Bachoo et al., 2004; Ben Haim & Rowitch, 2017;

Farmer & Murai, 2017; Hirrlinger & Nimmerjahn, 2022; Köhler

et al., 2021; Matyash & Kettenmann, 2010; Miller, 2018; Oberheim

et al., 2012; Schitine et al., 2015; Zhang & Barres, 2010). We here

compared metabolic properties of astrocytes in the Ctx and CC, repre-

sentative brain areas for GM and WM, respectively, focusing on the

NADH/NAD+ redox state and the cytosolic concentration of ATP.

The NADH/NAD+ redox ratio is a crucial metabolic node connecting

pathways like glycolysis, lactate production, TCA cycle and respiratory

chain. Furthermore, the NADH/NAD+ redox ratio is also sensed by

cellular signaling processes which are vice versa regulated by changes

in the NADH/NAD+ redox ratio (Berger et al., 2004; Hirrlinger &

Dringen, 2010; Requardt et al., 2012; Rutter et al., 2001; Winkler &

Hirrlinger, 2015; Ying, 2007). ATP is the central energy carrier of cells

and glutamate uptake-induced changes in [ATP] have been suggested

to regulate metabolic support from astrocytes to neurons (Azarias

et al., 2011; Barros & Deitmer, 2010; Bolaños, 2016; Dienel, 2013).

We show here that astrocytes in GM and WM differ in their basal

NADH/NAD+ redox state and ATP levels, which are sensitive to sig-

nals of neuronal activity in both astrocyte populations.

The basal NADH/NAD+ redox state was more reduced in astro-

cytes in WM compared to GM. Of note, this observation was revealed

with both fluorescence lifetime imaging and ratiometric intensity-

based imaging, suggesting that the differences are most likely not arti-

ficially generated, for example, by different scattering properties of

GM and WM, or by different scattering of light of the two wave-

lengths used for ratiometric imaging. As a note of caution, the quanti-

fication of the NADH/NAD+ redox state relies on the assumption

that saturation of the Peredox sensor is achieved during application of

10 mM lactate or pyruvate. While such a procedure has been used

successfully in cultured cells before (Hung et al., 2011; Köhler

et al., 2018; Mongeon et al., 2016), we cannot formally exclude that

the calibration procedure is affected by issues of diffusion or uptake

of lactate and pyruvate within the acute brain slice.

Fluorescent nanosensors report the actual concentration / redox

ratio of the respective metabolite, but not underlying metabolic fluxes

(Koveal et al., 2020). Some experimental paradigms have been devel-

oped to measure metabolic fluxes, for example, for glucose, lactate

and pyruvate (Bittner et al., 2010; San Martín et al., 2013; San Martín,

Ceballo, et al., 2014). However, in our experiments the nanosensors

report the steady state levels of the NADH/NAD+ redox state or

cytosolic ATP. Therefore, the increased NADH/NAD+ redox state in

WM might be due to either a relatively higher production or lower

consumption of NADH, while no conclusion on the overall rate of the

metabolic flux in Ctx compared to CC can be obtained from these

experiments. Similarly, the lower signal of the ATP sensor in WM

astrocytes reflects a higher consumption or lower production of ATP.

In general, glucose uptake, glucose phosphorylation and local glucose

utilization is slower in WM compared to GM (Sokoloff et al., 1977),

but whether this also refers to astrocytes specifically has not been

clarified yet. Furthermore, glycogen content is higher in GM astro-

cytes compared to WM astrocytes albeit with regional differences

(Brown, 2004; Brown & Ransom, 2007; Hirase et al., 2019; Oe

et al., 2016; Sagar et al., 1987; Swanson et al., 1989). In GM,

glycogen-derived lactate released from astrocytes supports glutama-

tergic neurotransmission (Bak & Walls, 2018; Dienel et al., 2007;

Sickmann et al., 2009), while, for example, in the highly myelinated

optic nerve, lactate produced from astrocytic glycogen is essential to

maintain the electrical activity during periods with low availability of

energy substrates and lactate transport is necessary for maintaining

axonal ATP levels (Brown et al., 2005; Trevisiol et al., 2017; Wender

et al., 2000). In the CC, glucose rather than lactate is transferred from

oligodendrocytes to axons (Meyer et al., 2018). On the other hand,

the activity of oxidative metabolism is lower than glycolytic activity in

WM, suggesting that WM is more prone to produce lactate (Morland

et al., 2007). While it has not been resolved whether this observation

obtained in total WM tissue is specifically reflecting properties of

astrocytes, an increase of glycolytic activity in combination with low

lactate usage under basal conditions would be consistent with an

increased NADH/NAD+ redox state. Of note, even under the well-

controlled basal experimental conditions providing glucose as energy

substrate, the NADH/NAD+ redox state shows a large variability

between cells indicating a pronounced heterogeneity of basal energy

metabolism in astrocytes as reported previously (Köhler et al., 2018;

Mongeon et al., 2016). In addition, the consumption of ATP varies

substantially depending on the physiological situation of a cell,

thereby requiring adaptation of ATP production. We formally cannot

exclude that the lower signal of the ATP sensor in astrocytes in CC is

due to different properties of the ATeam sensor when expressed in

WM astrocytes, including optical differences like enhanced scattering,

biochemical (e.g., different binding constants, different pH) or bio-

physical properties (e.g., different lifetimes of the sensor), which could

be caused by a different cellular environment or proteins interacting

with the sensor in one cell type, but not the other (see Koveal et al.

(2020) for a detailed discussion of confounding factors). However, the

observation that the ATP sensor reveals the same signal in astrocytes

in Ctx and CC after depletion of ATP shows that—at least under this

condition—the ATP sensor behaves similar in both cell populations.

Therefore, despite these caveats, these results suggest that the con-

centration of cytosolic ATP is lower in WM astrocytes compared to

astrocytes in GM. Mechanistically, the high NADH/NAD+ redox ratio

and low ATP might be linked via soluble adenylate cyclase which—as

shown in other cellular systems—is inhibited by low ATP (Zippin

et al., 2013) and its inhibition results in an increased NADH/NAD+

redox ratio (Chang et al., 2021). However, whether the reduced ATP

level observed in astrocytes in the CC reflects a lower energy demand

or a more constant ATP usage (thereby requiring less “reserve” ATP

for peak demands) of WM astrocytes remains to be elucidated.
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The local energy metabolism within the brain has to be adapted

to the actual local energy need (Oheim et al., 2018). Astrocytes are

key players in this neurometabolic coupling given their strategic posi-

tion contacting blood vessels, neuronal somata, synapses and axons

(Allaman et al., 2011; Allen & Barres, 2009; Bolaños, 2016; Bon-

vento & Bolaños, 2021; Nortley & Attwell, 2017; Yi et al., 2011).

Metabolism of astrocytes is regulated by signals indicating activity of

neurons including glutamate and K+. Glutamate is released at gluta-

matergic synapses, but also along axons propagating action potentials

(Kukley et al., 2007; Wake et al., 2011; Ziskin et al., 2007). Glutamate

can reach high concentrations in the vicinity of active synapses for

very short times in the millisecond range. However, as a caveat, the

experimental conditions used here (100 μM glutamate for minutes)

are supraphysiological. K+ is released from active neurons during

repolarization (Rash, 2010). Both glutamate and increasing [K+]e

induced an increase of the NADH/NAD+ redox ratio in cortical astro-

cytes consistent with previous reports indicating activation of glycoly-

sis by these signals (Bittner et al., 2010; Bittner et al., 2011;

Fernandez-Moncada et al., 2018; Ruminot et al., 2011; Sotelo-

Hitschfeld et al., 2012, 2015). Glutamate and increasing [K+]e

stimulate glycolysis in astrocytes with different kinetics (Bittner

et al., 2011; Köhler et al., 2018), which is reflected in the different

kinetics and amplitudes of the change of the NADH/NAD+ redox

ratio. Of note, both correlates of neuronal activity together resulted in

an additive response of the NADH/NAD+ redox ratio, suggesting that

they synergistically activate astrocytic energy metabolism, including

glycolysis.

The ATP sensor signal was also modulated by the application of

glutamate and increasing [K+]e. In cortical astrocytes, application of

glutamate resulted in a decrease of [ATP], consistent with previous

observations in other experimental systems (Fernandez-Moncada

et al., 2018; Magistretti & Chatton, 2005; Winkler et al., 2017). In cul-

tured cortical astrocytes, this decrease was estimated as �0.16 mM

or �11% of basal [ATP] (Köhler et al., 2020). In contrast, increasing

[K+]e from 2.5 to 5 mM (or 10 mM), which is well within the range of

physiological changes of [K+]e (Kofuji & Newman, 2004), induced an

increase in the ATP sensor signal indicating that ATP production is

enhanced or ATP consumption reduced (Fernandez-Moncada

et al., 2018; Lerchundi et al., 2019). In cultured cortical astrocytes, this

increase was quantified as 0.07 mM, that is, 5% of basal [ATP] (Köhler

et al., 2020). Increasing [K+]e results in activation of astrocyte glyco-

lytic metabolism by a mechanism involving the sodium-bicarbonate

cotransporter NBCe1, alkalization of the cytosol, and soluble adeny-

late cyclase (Choi et al., 2012; MacVicar & Choi, 2017), providing a

potential mechanism for the increased NADH/NAD+ redox ratio and

ATP production. Consistent with the additive increase of the NADH/

NAD+ redox ratio, the decrease of ATP induced by application of glu-

tamate alone was compensated by simultaneously increasing [K+]e

even under the supraphysiogical conditions of stimulation by gluta-

mate, indicating a very pronounced activation of ATP producing meta-

bolic pathways. Several mechanisms might underlie this observation:

(a) the glutamate induced decrease in cytosolic pH in astrocytes is

turned into alkalization by simultaneously increasing [K+]e (Rimmele

et al., 2018), thereby enabling stimulation of ATP production mediated

by soluble adenylate cyclase (Choi et al., 2012; MacVicar &

Choi, 2017); (b) increased [K+]e inhibits glutamate transport (Rimmele

et al., 2017; Tyurikova et al., 2022), thereby reducing glutamate-

induced acidification as well as Na+/K+-ATPase dependent ATP

demand. Furthermore, whether the non-canonical control of ATP pro-

duction by Na+/K+-ATPase recently described for neurons (Baeza-

Lehnert et al., 2019) also contributes to regulation of metabolism in

astrocytes remains to be established.

The CC, a typical WM region of the brain, has very different prop-

erties and functions compared to Ctx, a typical GM region. In Ctx, syn-

apses are the main source of glutamate, and K+ is released from

active dendrites, neuronal somata and axons. In the WM, glutamate is

released only from axons, albeit at lower amounts than in GM (Kukley

et al., 2007; Wake et al., 2011; Ziskin et al., 2007), and axons release

K+ during repolarization (Rash, 2010). Furthermore, action potential

propagation in WM demands different energetic needs than synaptic

signal transmission and integration. Nevertheless, astrocytes in CC

showed a similar metabolic response as cortical astrocytes to bath

application of glutamate, increased [K+]e or a combination of both

treatments. Furthermore, astrocytes only have direct access to either

unmyelinated axons or limited to the node of Ranvier. Glutamate is

taken up by astrocytes via the glutamate transporters GLAST or Glt-1

(Rose et al., 2018). GLAST-promoter activity has been detected in

WM astrocytes in the adult mouse brain; however, expression and

activity of the glutamate transporter Glt-1 is markedly lower in WM

astrocytes compared to GM (Hassel et al., 2003; Regan et al., 2007).

Furthermore, in WM also oligodendrocytes contribute to metabolic

support and ion homeostasis (Fünfschilling et al., 2012; Hirrlinger &

Nave, 2014; Lee et al., 2012; Nave, 2010a, 2010b; Rash, 2010) and

glutamate released from axons regulates metabolic support from oli-

godendrocytes to axons via oligodendroglial NMDA-receptors (Saab

et al., 2016). However, our data indicate that these potential differ-

ences in metabolic demands for astrocytes in Ctx and CC are mainly

reflected in differences in basal regulation of metabolism, but the

mechanisms responding to neuronal activity are conserved between

the two brain regions.

A decrease in [ATP] induced by glutamate uptake has been pro-

posed as a major mechanism of neuron-astrocyte metabolic coupling

in GM (Azarias et al., 2011; Barros & Deitmer, 2010; Bolaños, 2016;

Dienel, 2013; Pellerin & Magistretti, 2012). During neuronal activity,

K+ is necessarily released as well (Poolos et al., 1987; Rash, 2010)

raising the possibility that [ATP] rather increases also in more physio-

logical situations because of K+ induced metabolic stimulation. How-

ever, when high intrinsic electrical activity was induced in slices by

0 Mg2+/bicuculline, a slight reduction in the ATP sensor signal in

astrocytes in Ctx and CC was observed, suggesting that the K+

induced increase in [ATP] cannot fully compensate the activity

induced increase in ATP consumption under these conditions. A

biphasic response of astrocytic [ATP] consisting of a short increase

followed by a prolonged decrease below basal levels was reported in

hippocampal organotypic cultures during treatment with 0 Mg2+/

bicuculline (Lerchundi et al., 2020). Within the GM of the brain,
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astrocytes extend uncountable fine processes contacting numerous

synapses and forming local microdomains (Aten et al., 2022; Grosche

et al., 1999; Reichenbach et al., 2010). Subcellular regulation of astro-

cytic metabolism on the spatial scale of these microdomains has been

proposed (Oheim et al., 2018). It is tempting to speculate that in astro-

glial processes, which are in close contact to glutamatergic synapses, a

decrease of [ATP] by glutamate prevails, while other parts of the cells

might be mainly affected by fluctuations of [K+]e. Glutamate uptake

also varies between single synapses depending on the spine size

(Herde et al., 2020). A similar situation might reflect astrocyte pro-

cesses contacting the nodes of Ranvier in WM. However, detailed

knowledge of the concentration of glutamate and K+ during physio-

logical brain function at high temporal and spatial resolution is cur-

rently lacking, therefore, the details of such subcellular regulation

remain to be established.

In summary, we have compared metabolic properties of astro-

cytes in the Ctx and CC, two prototypical brain regions for GM and

WM, respectively. We provide evidence that astrocytes in both

regions have different basal metabolic properties, but respond meta-

bolically to neuronal activity in a similar pattern. Therefore, these find-

ings provide novel insight in metabolic homeostasis of the brain and

add to the increasing knowledge of heterogeneity of astrocytes within

different brain regions (Farmer & Murai, 2017; García-Marqués &

L�opez-Mascaraque, 2013; Hirrlinger & Nimmerjahn, 2022; Köhler

et al., 2021; Matyash & Kettenmann, 2010; Zhang & Barres, 2010).
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